Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water

نویسندگان

  • Natália Rocha Barboza
  • Soraya Sander Amorim
  • Pricila Almeida Santos
  • Flávia Donária Reis
  • Mônica Mendes Cordeiro
  • Renata Guerra-Sá
  • Versiane Albis Leão
چکیده

Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II) ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II), we investigated the potential of Mn(II) oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II). A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II) removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II) mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II) by a nonenzymatic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon.

Three strains of Gram-negative bacteria capable of removing geosmin from drinking water were isolated from biologically active carbon and identified to be Chryseobacterium sp., Sinorhizobium sp. and Stenotrophomonas sp. based on physio-biochemistry analysis and 16S rRNA gene sequence analysis. Removal efficiencies of 2 mg/L geosmin in mineral salts medium were 84.0%, 80.2% and 74.4% for Chryseo...

متن کامل

Chromium bioremediation by Alcaligenes sp. strain newly isolated from chromite mine of Sabzevar

In this work, CKCr-6A strain was found to be highly resistant to some toxic heavy metals such as Cr+6, Cr+3, Cu+2, Co+2, Cd+2, Pb+2, Hg+2, U+6, tellurium, and selenite. Herein, high chromate tolerance of an isolated strain is reported with a high minimum inhibitory concentration value of 80,000 mg/L and the ...

متن کامل

Biological Removal of phosphate from Synthetic Wastewater Using Bacterial Consortium

The biological phosphorus removal is a microbial process widely used for removing phosphorus fromwastewater to avoid eutrophication of water bodies. The study was aimed to screen the efficient phosphatereducing isolates and used to remove phosphate from synthetic wastewater using batch scale process. Thethree most efficient phosphate reducers were isolated and screened from eu...

متن کامل

Draft Genome Sequence of a Selenite- and Tellurite-Reducing Marine Bacterium, Lysinibacillus sp. Strain ZYM-1

Lysinibacillus sp. ZYM-1, a Gram-positive strain isolated from marine sediments, reduces selenite and tellurite efficiently. Meanwhile, it also exhibits high resistance to Zn2+ and Mn2+. Here, we report the draft genome sequence of strain ZYM-1, which contains genes related to selenite and tellurite reduction and also metal resistance.

متن کامل

Lysinibacillus manganicus sp. nov., isolated from manganese mining soil.

A Gram-stain-positive, aerobic, motile, rod-shaped bacterium, designated strain Mn1-7(T), was isolated from manganese mining soil in Tianjin, China. The closest phylogenetic relatives were Lysinibacillus massiliensis CCUG 49529(T) (97.2 % 16S rRNA gene sequence similarity), L. xylanilyticus XDB9(T) (96.7 %), L. sinduriensis JCM 15800(T) (96.2 %), L. odysseyi NBRC 100172(T) (95.9 %) and L. boron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015